Information-driven robotic sampling in the coastal ocean

TitleInformation-driven robotic sampling in the coastal ocean
Publication TypeJournal Article
Year of Publication2018
AuthorsOlav, FTrygve, Jo, E, Ingrid, E, Omholt, AMorten, Moreira, FGlaucia, Geir, J, Renato, M, Martin, L, Kanna, R
JournalJournal of Field Robotics
KeywordsGaussian processes, Marine robotics, ocean modeling, ocean sampling, robotic sampling

Abstract Efficient sampling of coastal ocean processes, especially mechanisms such as upwelling and internal waves and their influence on primary production, is critical for understanding our changing oceans. Coupling robotic sampling with ocean models provides an effective approach to adaptively sample such features. We present methods that capitalize on information from ocean models and in situ measurements, using Gaussian process modeling and objective functions, allowing sampling efforts to be concentrated to regions with high scientific interest. We demonstrate how to combine and correlate marine data from autonomous underwater vehicles, model forecasts, remote sensing satellite, buoy, and ship-based measurements, as a means to cross-validate and improve ocean model accuracy, in addition to resolving upper water-column interactions. Our work is focused on the west coast of Mid-Norway where significant influx of Atlantic Water produces a rich and complex physical–biological coupling, which is hard to measure and characterize due to the harsh environmental conditions. Results from both simulation and full-scale sea trials are presented.